Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
1.
Emerg Infect Dis ; 30(4): 732-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526134

RESUMO

In 2018, a local case of nephropathia epidemica was reported in Scania, southern Sweden, more than 500 km south of the previously known presence of human hantavirus infections in Sweden. Another case emerged in the same area in 2020. To investigate the zoonotic origin of those cases, we trapped rodents in Ballingslöv, Norra Sandby, and Sörby in southern Sweden during 2020‒2021. We found Puumala virus (PUUV) in lung tissues from 9 of 74 Myodes glareolus bank voles by screening tissues using a hantavirus pan-large segment reverse transcription PCR. Genetic analysis revealed that the PUUV strains were distinct from those found in northern Sweden and Denmark and belonged to the Finnish PUUV lineage. Our findings suggest an introduction of PUUV from Finland or Karelia, causing the human PUUV infections in Scania. This discovery emphasizes the need to understand the evolution, cross-species transmission, and disease outcomes of this newly found PUUV variant.


Assuntos
Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/veterinária , Virus Puumala/genética , Suécia/epidemiologia , Arvicolinae
2.
Integr Zool ; 19(1): 52-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37899277

RESUMO

Rodents are important reservoirs for zoonotic pathogens that cause diseases in humans. Biodiversity is hypothesized to be closely related to pathogen prevalence through multiple direct and indirect pathways. For example, the presence of non-host species can reduce contact rates of the main reservoir host and thus reduce the risk of transmission ("dilution effect"). In addition, an overlap in ecological niches between two species could lead to increased interspecific competition, potentially limiting host densities and reducing density-dependent pathogen transmission processes. In this study, we investigated the relative impact of population-level regulation of direct and indirect drivers of the prevalence of Puumala orthohantavirus (PUUV) in bank voles (Clethrionomys glareolus) during years with high abundance. We compiled data on small mammal community composition from four regions in Germany between 2010 and 2013. Structural equation modeling revealed a strong seasonality in PUUV control mechanisms in bank voles. The abundance of shrews tended to have a negative relationship with host abundance, and host abundance positively influenced PUUV seroprevalence, while at the same time increasing the abundance of competing non-hosts like the wood mouse (Apodemus sylvaticus) and the yellow-necked field mouse (Apodemus flavicollis) were associated with reduced PUUV seroprevalence in the host. These results indicate that for PUUV in bank voles, dilution is associated with increased interspecific competition. Anthropogenic pressures leading to the decline of Apodemus spp. in a specific habitat could lead to the amplification of mechanisms promoting PUUV transmission within the host populations.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Humanos , Animais , Camundongos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Estudos Soroepidemiológicos , Murinae , Arvicolinae , Dinâmica Populacional
3.
Thromb Res ; 233: 41-54, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006765

RESUMO

Thrombocytopenia is a cardinal symptom of hantavirus-induced diseases including Puumala virus (PUUV)-induced hemorrhagic fever with renal syndrome (HFRS), which is associated with impaired platelet function, bleeding manifestations and augmented thrombotic risk. However, the underlying mechanisms causing thrombocytopenia and platelet hypo-responsiveness are unknown. Thus, we investigated the direct and indirect impact of PUUV on platelet production, function and degradation. Analysis of PUUV-HFRS patient blood revealed that platelet hypo-responsiveness in PUUV infection was cell-intrinsic and accompanied by reduced platelet-leukocyte aggregates (PLAs) and upregulation of monocyte tissue factor (TF), whereas platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation was comparable to healthy controls. Plasma CXCL4 levels followed platelet count dynamics throughout disease course. PUUV activated both neutrophils and monocytes in vitro, but platelet desialylation, degranulation and GPIIb/IIIa activation as well as PLA formation and endothelial adhesion under flow remained unaltered in the presence of PUUV. Further, MEG-01 megakaryocytes infected with PUUV displayed unaltered polyploidization, expression of surface receptors and platelet production. However, infection of endothelial cells with PUUV significantly increased platelet sequestration. Our data thus demonstrate that although platelet production, activation or degradation are not directly modulated, PUUV indirectly fosters thrombocytopenia by sequestration of platelets to infected endothelium. Upregulation of immunothrombotic processes in PUUV-HFRS may further contribute to platelet dysfunction and consumption. Given the pathophysiologic similarities of hantavirus infections, our findings thus provide important insights into the mechanisms underlying thrombocytopenia and highlight immune-mediated coagulopathy as potential therapeutic target.


Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Trombocitopenia , Humanos , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/terapia , Células Endoteliais
4.
Vopr Virusol ; 68(4): 283-290, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-38156585

RESUMO

INTRODUCTION: Puumala virus (family Hantaviridae, genus Orthohantavirus) is distributed in most regions of the European part of Russia. However, information about its genetic variants circulating on the territory of the Central Federal District is extremely scarce. MATERIALS AND METHODS: Rodents' tissue samples were tested after reverse transcription by PCR for the presence of hantaviral RNA. The amplified fragments of the L segment were sequenced by the Sanger method. For two samples, sequences of all three segments were obtained using the NGS method. Phylogenetic trees were built in the MEGA-X software. RESULTS: Puumala virus was found in six samples. Based on the phylogenetic analysis of sequences of three segments, the obtained genetic variants belong to the sublineage previously designated as W-RUS. CONCLUSION: A genetic variant of the Puumala virus, belonging to the subline W-RUS, circulates on the territory of the Volokolamsk district of Moscow region.


Assuntos
Orthohantavírus , Virus Puumala , Animais , Virus Puumala/genética , Filogenia , Orthohantavírus/genética , Moscou/epidemiologia , Arvicolinae
5.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801017

RESUMO

Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.


Assuntos
Orthohantavírus , Virus Puumala , Humanos , Virus Puumala/genética , Virus Puumala/química , Anticorpos Monoclonais , Anticorpos Neutralizantes , Epitopos de Linfócito B , Aminoácidos , Anticorpos Antivirais , Testes de Neutralização
6.
Virus Res ; 337: 199230, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777116

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) represents a serious zoonotic disease caused by orthohantaviruses in Eurasia. A specific antiviral therapy is not available. HFRS is characterized by acute kidney injury (AKI) with often massive proteinuria. Infection of kidney cells may contribute to the clinical picture. However, orthohantaviral replication in kidney cells is not well characterized. Therefore, we aimed to perform a reliable high-throughput assay that allows the quantification of infection rates and testing of antiviral compounds in different cell types. We quantified relative infection rates of Eurasian pathogenic Puumala virus (PUUV) by staining of nucleocapsid protein (N protein) in an in-cell Western (ICW) assay. Vero E6 cells, derived from the African green monkey and commonly used in viral cell culture studies, and the human podocyte cell line CIHP (conditionally immortalized human podocytes) were used to test the ICW assay for replication kinetics and antiviral drug testing. Quantification of infection by ICW revealed reliable results for both cell types, as shown by their correlation with immunofluorescence quantification results by counting infected cells. Evaluation of antiviral efficacy of ribavirin by ICW assay revealed differences in the toxicity (TC) and inhibitory concentrations (IC) between Vero E6 cells and podocytes. IC5O of ribavirin in podocytes is about 12-fold lower than in Vero E6 cells. In summary, ICW assay together with relevant human target cells represents an important tool for the study of hantaviral replication and drug testing.


Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Animais , Humanos , Chlorocebus aethiops , Febre Hemorrágica com Síndrome Renal/tratamento farmacológico , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
7.
Infect Dis Now ; 53(8): 104767, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562571

RESUMO

OBJECTIVE: A large and unprecedented outbreak of an attenuated form of hemorrhagic fever with renal syndrome called nephropathia epidemica (NE) and caused by Puumala virus (PUUV) occurred in 2021 in the southern Jura Mountains (France) leading to numerous hospitalizations. The aim of this study was to investigate the circulation of PUUV in its animal reservoir at the time of this outbreak. METHODS: We conjointly surveyed bank vole relative abundance, small mammal community composition, and PUUV circulation in bank voles (seroprevalence and genetic diversity) in the Jura NE epidemic area, between 2020 and 2022. RESULTS: Trapping results showed a higher relative abundance of bank voles in 2021 compared to 2020 and 2022. Extremely high levels of PUUV seroprevalence in bank voles were found at the time of the human NE epidemic with seropositive animals trapped in almost all trap lines as of spring 2021. Genetic analyses of PUUV (S segment) gathered in 2021 at two sampling sites revealed a strong clustering of these strains within the "Jura" clade. No significant genetic variation was detected compared to what was already known to be circulating in the Jura region. CONCLUSION: These results underline a need for enhanced monitoring of PUUV circulation in host reservoir populations in NE endemic areas. This would enable the relevant actors to better inform and sensitize the public on this zoonotic risk, and to implement prevention strategies in collaboration with physicians.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Virus Puumala/genética , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/genética , Estudos Soroepidemiológicos , Surtos de Doenças , Arvicolinae , França/epidemiologia
8.
J Clin Microbiol ; 61(8): e0037223, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37486218

RESUMO

Molecular detection of Orthohantavirus puumalaense (PUUV) RNA during the course of the disease has been studied in blood of patients in Sweden and Slovenia. The use of urine has been poorly investigated. The aims of this work were to study PUUV RNA detection in plasma from a cohort of patients in France where a different PUUV lineage circulates and to assess the use of urine instead of plasma. Matched plasma and urine samples were collected daily from hospitalized patients presenting with fever, pain, and thrombocytopenia within the last 8 days and testing positive for IgM and IgG against PUUV in serum collected at inclusion and/or approximately 1 month after release. RNA was extracted from samples, and PUUV RNA was detected using real-time reverse transcription-PCR for plasma and urine samples. Sixty-seven patients presented a serologically confirmed acute hantavirus infection. At inclusion, PUUV RNA was detected in plasma from 55 of 62 patients (88.7%) sampled within the first week after disease onset, whereas it was detected in 15 of 60 (25.0%) of matched urine samples. It was then detected from 33 (71.7%) and 2 (4.4%) of 46 patients discharged from the hospital during the second week after disease onset, in plasma and urine, respectively. When PUUV RNA was detected in urine it was also detected in plasma, and not vice versa. Detection of PUUV RNA in plasma from hospitalized patients in France is similar to that observed in Sweden and Slovenia. Urine is not an appropriate sample for this detection.


Assuntos
Doenças Transmissíveis , Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Humanos , Febre Hemorrágica com Síndrome Renal/diagnóstico , Virus Puumala/genética , RNA Viral/genética , França/epidemiologia , Anticorpos Antivirais
9.
Emerg Infect Dis ; 29(7): 1420-1424, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347809

RESUMO

We analyzed Puumala virus (PUUV) sequences collected from bank voles from different regions of Russia. Phylogenetic analysis revealed PUUV reassortments in areas with the highest hemorrhagic fever with renal syndrome incidence, indicating reassortment might contribute to pathogenic properties of PUUV. Continued surveillance is needed to assess PUUV pathogenicity in Russia.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Virus Puumala/genética , Febre Hemorrágica com Síndrome Renal/epidemiologia , Filogenia , Arvicolinae , Federação Russa/epidemiologia
10.
Emerg Infect Dis ; 29(5): 1038-1041, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081597

RESUMO

We investigated a prospective cohort of 23 patients who had Puumala virus infection in Austria to determine predictors of infection outcomes. We reviewed routinely available clinical and laboratory parameters collected when patients initially sought care. Low absolute lymphocyte count and dyspnea were parameters associated with a severe course of infection.


Assuntos
Febre Hemorrágica com Síndrome Renal , Linfopenia , Virus Puumala , Humanos , Dispneia/etiologia , Prognóstico , Estudos Prospectivos
11.
Int J Infect Dis ; 131: 1-6, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948450

RESUMO

OBJECTIVES: The Puumala virus (PUUV) is a hantavirus that causes hemorrhagic fever with renal syndrome. Studies showing an increased risk of lymphoid malignancies after hantavirus infection, together with the observation that PUUV infects B cells, motivated us to study the risk of lymphoid malignancies after PUUV infection. METHODS: We linked data from the Finnish Cancer Registry and National Infectious Diseases Register for 2009-2019. We used a time-dependent Cox regression model to evaluate the hazard of the lymphoid malignancies grouped according to the HAEMACARE classification. RESULTS: We identified 68 cases of lymphoid malignancies after PUUV infection among 16,075 PUUV-infected individuals during 61,114,826 person-years of observation. A total of 10 cases occurred within 3-<12 months and 38 within 1-<5 years after PUUV infection, and the risk of lymphoid malignancies increased with hazard ratios (HRs) of 2.0 (95% confidence interval [CI], 1.1-3.7) and 1.6 (95% CI, 1.2-2.3), respectively. The group of mature B cell neoplasms showed an increased risk 3-<12 months and 1-<5 years after PUUV infection, HR 2.2 (95% CI, 1.2-4.3) and HR 1.8 (95% CI, 1.3-2.5), respectively. CONCLUSION: PUUV infection is associated with lymphoid malignancies in the Finnish population, supporting the earlier studies. Further research is required to understand the pathophysiological mechanisms behind this association.


Assuntos
Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Neoplasias , Virus Puumala , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Finlândia/epidemiologia , Estudos de Coortes , Estudos Retrospectivos , Infecções por Hantavirus/epidemiologia , Neoplasias/etiologia , Neoplasias/complicações
12.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992321

RESUMO

In Europe, most cases of human hantavirus disease are caused by Puumala orthohantavirus (PUUV) transmitted by bank voles (Clethrionomys glareolus, syn. Myodes glareolus), in which PUUV causes inconspicuous infection. Little is known about tropism and endoparasite coinfections in PUUV-infected reservoir and spillover-infected rodents. Here, we characterized PUUV tropism, pathological changes and endoparasite coinfections. The voles and some non-reservoir rodents were examined histologically, immunohistochemically, by in situ hybridization, indirect IgG enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. PUUV RNA and anti-PUUV antibodies were detected simultaneously in a large proportion of the bank voles, indicating persistent infection. Although PUUV RNA was not detected in non-reservoir rodents, the detection of PUUV-reactive antibodies suggests virus contact. No specific gross and histological findings were detected in the infected bank voles. A broad organ tropism of PUUV was observed: kidney and stomach were most frequently infected. Remarkably, PUUV was detected in cells lacking the typical secretory capacity, which may contribute to the maintenance of virus persistence. PUUV-infected wild bank voles were found to be frequently coinfected with Hepatozoon spp. and Sarcocystis (Frenkelia) spp., possibly causing immune modulation that may influence susceptibility to PUUV infection or vice versa. The results are a prerequisite for a deeper understanding of virus-host interactions in natural hantavirus reservoirs.


Assuntos
Coinfecção , Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Coinfecção/veterinária , Virus Puumala/genética , Arvicolinae , RNA
13.
Viruses ; 15(3)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992513

RESUMO

The clinical outcome of Puumala hantavirus (PUUV) infection shows extensive variation, ranging from inapparent subclinical infection (70-80%) to severe hemorrhagic fever with renal syndrome (HFRS), with about 0.1% of cases being fatal. Most hospitalized patients experience acute kidney injury (AKI), histologically known as acute hemorrhagic tubulointerstitial nephritis. Why this variation? There is no evidence that there would be more virulent and less virulent variants infecting humans, although this has not been extensively studied. Individuals with the human leukocyte antigen (HLA) alleles B*08 and DRB1*0301 are likely to have a severe form of the PUUV infection, and those with B*27 are likely to have a benign clinical course. Other genetic factors, related to the tumor necrosis factor (TNF) gene and the C4A component of the complement system, may be involved. Various autoimmune phenomena and Epstein-Barr virus infection are associated with PUUV infection, but hantavirus-neutralizing antibodies are not associated with lower disease severity in PUUV HFRS. Wide individual differences occur in ocular and central nervous system (CNS) manifestations and in the long-term consequences of nephropathia epidemica (NE). Numerous biomarkers have been detected, and some are clinically used to assess and predict the severity of PUUV infection. A new addition is the plasma glucose concentration associated with the severity of both capillary leakage, thrombocytopenia, inflammation, and AKI in PUUV infection. Our question, "Why this variation?" remains largely unanswered.


Assuntos
Injúria Renal Aguda , Infecções por Vírus Epstein-Barr , Infecções por Hantavirus , Febre Hemorrágica com Síndrome Renal , Virus Puumala , Humanos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Infecções por Hantavirus/complicações
14.
Sci Rep ; 13(1): 3585, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869118

RESUMO

Human Puumala virus (PUUV) infections in Germany fluctuate multi-annually, following fluctuations of the bank vole population size. We applied a transformation to the annual incidence values and established a heuristic method to develop a straightforward robust model for the binary human infection risk at the district level. The classification model was powered by a machine-learning algorithm and achieved 85% sensitivity and 71% precision, despite using only three weather parameters from the previous years as inputs, namely the soil temperature in April of two years before and in September of the previous year, and the sunshine duration in September of two years before. Moreover, we introduced the PUUV Outbreak Index that quantifies the spatial synchrony of local PUUV-outbreaks, and applied it to the seven reported outbreaks in the period 2006-2021. Finally, we used the classification model to estimate the PUUV Outbreak Index, achieving 20% maximum uncertainty.


Assuntos
Virus Puumala , Humanos , Animais , Algoritmos , Arvicolinae , Surtos de Doenças , Aprendizado de Máquina
15.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674534

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) remains a prevalent zoonosis in the Republic of Tatarstan (RT), Russian Federation. Puumala orthohantavirus (PUUV), carried by bank voles (Myodes glareolus), is the principal zoonotic pathogen of HFRS in the RT. In this study, we sought to demonstrate the similarity of the PUUV genetic sequences detected in HFRS case patients and bank vole samples previously collected in some areas of the RT. Furthermore, we intended to identify the reassortant PUUV genomes and locate a potential site for their emergence. During 2019 outbreaks, the PUUV genome sequences of the S and M segments from 42 HFRS cases were analysed and compared with the corresponding sequences from bank voles previously trapped in the RT. Most of the PUUV strains from HFRS patients turned out to be closely related to those isolated from bank voles captured near the site of the human infection. We also found possible reassortant PUUV genomes in five patients while they were absent in bank voles. The location of the corresponding HFRS infection sites suggests that reassortant PUUV genomes could emerge in the bank voles that inhabit the forests on the watershed between the Kazanka River and Myosha River. These findings could facilitate the search for the naturally occurring reassortants of PUUV in bank vole populations.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Humanos , Febre Hemorrágica com Síndrome Renal/epidemiologia , Virus Puumala/genética , Zoonoses , Florestas , Arvicolinae
16.
Infect Dis (Lond) ; 55(3): 207-215, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562294

RESUMO

BACKGROUND: Puumala hantavirus (PUUV) causes most cases of haemorrhagic fever with renal syndrome (HFRS) in Europe. PUUV infection is characterised by acute kidney injury, thrombocytopenia and increased capillary leakage. Typical symptoms are fever, headache, nausea, abdominal and back pain. This study aimed to evaluate the amount and distribution of intraperitoneal, retroperitoneal and pleural fluid and the association of fluid collections to the symptoms and clinical findings in patients with acute PUUV infection. METHODS: Abdominal magnetic resonance imaging (MRI) was performed on 27 hospitalised patients with acute PUUV infection. The clinical and laboratory findings and patients' symptoms were analysed in relation to the imaging findings. The thickness of the fluid collections was measured in millimetres (mm) from axial images. RESULTS: Fluid collections were found in all patients. The amount of intraperitoneal fluid correlated positively with plasma C-reactive protein (CRP) level (r = 0.586, p = .001), while it had an inverse correlation with serum creatinine concentration (r = -0.418, p = .030). Retroperitoneal fluid also correlated inversely with serum creatinine and cystatin C concentrations (r = -0.501, p = .008 and r = -0.383, p = .048, respectively). The amount of fluid was not greater in patients with abdominal or back pain. Patients with back pain had higher serum creatinine compared with patients without back pain, 452 µmol/L (range 88-1071) vs. 83 µmol/L (range 60-679), p = .004. CONCLUSIONS: Fluid collections were found in all patients. A greater amount of intraperitoneal fluid associates with higher CRP concentrations but not with higher serum creatinine levels. Back pain associates with higher creatinine level but not with the presence of fluids.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Trombocitopenia , Humanos , Creatinina , Febre Hemorrágica com Síndrome Renal/complicações , Trombocitopenia/complicações , Imageamento por Ressonância Magnética
17.
PLoS Negl Trop Dis ; 16(10): e0010844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36223391

RESUMO

Orthohantaviruses are rodent-borne emerging viruses that may cause severe diseases in humans but no apparent pathology in their small mammal reservoirs. However, the mechanisms leading to tolerance or pathogenicity in humans and persistence in rodent reservoirs are poorly understood, as is the manner in which they spread within and between organisms. Here, we used a range of cellular and molecular approaches to investigate the interactions of three different orthohantaviruses-Puumala virus (PUUV), responsible for a mild to moderate form of hemorrhagic fever with renal syndrome in humans, Tula virus (TULV) with low pathogenicity, and non-pathogenic Prospect Hill virus (PHV)-with human and rodent host cell lines. Besides the fact that cell susceptibility to virus infection was shown to depend on the cell type and virus strain, the three orthohantaviruses were able to infect Vero E6 and HuH7 human cells, but only the former secreted infectious particles. In cells derived from PUUV reservoir, the bank vole (Myodes glareolus), PUUV achieved a complete viral cycle, while TULV did not enter the cells and PHV infected them but did not produce infectious particles, reflecting differences in host specificity. A search for mature virions by electron microscopy (EM) revealed that TULV assembly occurred in part at the plasma membrane, whereas PHV particles were trapped in autophagic vacuoles in cells of the heterologous rodent host. We described differential interactions of orthohantaviruses with cellular factors, as supported by the cellular distribution of viral nucleocapsid protein with cell compartments, and proteomics identification of cellular partners. Our results also showed that interferon (IFN) dependent gene expression was regulated in a cell and virus species dependent manner. Overall, our study highlighted the complexity of the host-virus relationship and demonstrated that orthohantaviruses are restricted at different levels of the viral cycle. In addition, the study opens new avenues to further investigate how these viruses differ in their interactions with cells to evade innate immunity and how it depends on tissue type and host species.


Assuntos
Orthohantavírus , Virus Puumala , Vírus de RNA , Vírus , Humanos , Animais , Roedores , Orthohantavírus/genética , Virus Puumala/genética , Arvicolinae , Proteínas do Nucleocapsídeo/genética , Interferons
18.
Viruses ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891358

RESUMO

Puumala orthohantavirus (PUUV) is endemic in Europe and can cause hemorrhagic fever with renal syndrome (nephropathia epidemica). Disease features include fever, thrombocytopenia, and acute kidney injury (AKI). This retrospective cohort study of forty PUUV patients aims to characterize associations of serum immunological, hemostatic or kidney injury markers to disease severity. While interleukin-18 (IL-18) was significantly increased in severely thrombocytopenic patients (<100 × 109 platelets/L) compared to patients with higher platelet counts, RANTES was significantly decreased in these patients. These data suggest that patients with significant thrombocytopenia might have experienced pronounced Th1 immune responses. When kidney dysfunction was used as the primary disease outcome, recently identified AKI biomarkers (Cystatin C, insulin-like growth factor-binding protein 7, Nephrin, and trefoil factor 3) were significantly upregulated in patients with severe PUUV infection, defined as the estimated glomerular filtration rate (eGFR) below 30 m/min/1.73 m2. The increased expression of these markers specifically indicates pathology in glomeruli and proximal tubuli. Furthermore, E-selectin was significantly higher while interferon gamma-induced protein 10 (IP-10) was significantly lower in PUUV patients with more severe kidney dysfunction compared to patients with higher eGFR-values. Increased E-selectin illustrates the central role of endothelial cell activation, whereas decreased IP-10 could indicate a less important role of this cytokine in the pathogenesis of kidney dysfunction.


Assuntos
Injúria Renal Aguda , Febre Hemorrágica com Síndrome Renal , Virus Puumala , Trombocitopenia , Injúria Renal Aguda/patologia , Biomarcadores , Quimiocina CXCL10 , Estudos de Coortes , Selectina E , Humanos , Rim/patologia , Estudos Retrospectivos , Índice de Gravidade de Doença , Trombocitopenia/complicações
19.
Epidemics ; 40: 100600, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35809515

RESUMO

Given the difficulty of measuring pathogen transmission in wildlife, epidemiological studies frequently rely on cross-sectional seroprevalence. However, seropositivity indicates only exposure to a pathogen at an unknown time. By allowing to obtain repeated test results from individuals sampled multiple times over an extended period, longitudinal data help reduce this uncertainty. We used capture-mark-recapture data on bank vole (Myodes glareolus) individuals collected at four sites over ten years in northeastern France to investigate the impact of environmental variables on seroprevalence and incidence of Puumala orthohantavirus (PUUV). PUUV causes a chronic infection without apparent symptoms, that may however impair survival of its rodent host in the wild. Viral transmission between rodents may occur through direct contact or via the environment. Principal component analysis was used to deal with multicollinearity among environmental variables. Incidence and seroprevalence were investigated with either generalized estimating equations or Poisson regression models depending on the number of observations for each season. In spring, only the factor site was found to be significant for seroprevalence, while a principal component including meteorological conditions of the previous winter and the normalized difference vegetation index (NDVI) of both the previous winter and spring had a significant effect on incidence. In autumn, only the factor site was significant for incidence, while two principal components, including either the meteorological conditions of the autumn and previous spring or NDVI of the autumn significantly affected seroprevalence. We discuss these results in light of the particular demography of small mammals. We encourage other researchers to investigate the relationships between demographic parameters of wild host populations and the environment, by using both incidence and seroprevalence.


Assuntos
Febre Hemorrágica com Síndrome Renal , Virus Puumala , Animais , Arvicolinae , Estudos Transversais , França/epidemiologia , Febre Hemorrágica com Síndrome Renal/epidemiologia , Incidência , Estações do Ano , Estudos Soroepidemiológicos
20.
Infect Dis (Lond) ; 54(10): 766-772, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713235

RESUMO

BACKGROUND: Orthohantaviruses are rodent-borne emerging viruses that cause haemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus pulmonary syndrome in America. Transmission between humans have been reported and the case-fatality rate ranges from 0.4% to 40% depending on virus strain. There is no specific and efficient treatment for patients with severe HFRS. Here, we characterised a fatal case of HFRS and sequenced the causing Puumala orthohantavirus (PUUV). METHODS: PUUV RNA and virus specific neutralising antibodies were quantified in plasma samples from the fatal case and other patients with non-fatal PUUV infection. To investigate if the causing PUUV strain was different from previously known strains, Sanger sequencing was performed directly from the patient's plasma. Biopsies obtained from autopsy were stained for immunohistochemistry. RESULTS: The patient had approximately tenfold lower levels of PUUV neutralising antibodies and twice higher viral load than was normally seen for patients with less severe PUUV infection. We could demonstrate unique mutations in the S and M segments of the virus that could have had an impact on the severity of infection. Due to the severe course of infection, the patient was treated with the bradykinin receptor inhibitor icatibant to reduce bradykinin-mediated vessel permeability and maintain vascular circulation. CONCLUSIONS: Our data suggest that bradykinin receptor inhibitor may not be highly efficient to treat patients that are at an advanced stage of HFRS. Low neutralising antibodies and high viral load at admission to the hospital were associated with the fatal outcome and may be useful for future predictions of disease outcome.


Assuntos
Febre Hemorrágica com Síndrome Renal , Orthohantavírus , Virus Puumala , Anticorpos Neutralizantes , Anticorpos Antivirais , Antagonistas dos Receptores da Bradicinina , Genômica , Orthohantavírus/genética , Humanos , Virus Puumala/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...